SITRIUS

Testing Sirius With Jep

Maulan Byron, James Wakemen & Andrew W

Write Path: 1. update Rea!d P ath
\ (optimized): a. request
~

Application ’ Application /

6.0k 2 enqueue b. read directly \

A i 1‘ from brain_,

) \¢
Sirius T Y Sirius ﬁl—’r
g 4. persist
Request ‘ 4. persist Request ; ¢
Handler Handler

("Brain") 5. handle ("Brain") 5. handle

One of the “eight fallacies of distributed computing,” famously coined by L. Peter Deutsch, is
“the network is reliable.” It’s a fallacy because perhaps the hardest problem to solve, when
architecting and maintaining any distributed application, is the detection and correction of
network errors.

This is all the more important when considering the scale and overall heft of what is a video-
centric cloud. For ours, we developed an open source and distributed system library, called Sirius.
Its purpose is to deliver and coordinate data updates amongst a cluster of nodes. Sirius enables
developers to build an absolute ordering for updates that arrive in the cluster, ensuring that cluster
nodes eventually receive all updates, and persisting the updates on each node. Such updates are
generally used to build in-memory data structures on each node, allowing applications using
Sirius to have direct access to native data structures, representing up-to-date data.

TESTING SIRIUS WITH JEPSEN

Sirius does not, however, build these data structures itself -- instead, the client application supplies a
callback handler. This allows developers using Sirius to build whatever structures are most
appropriate for their application.

Said another way: Sirius enables a cluster of nodes to keep developer-controlled, in-memory data
structures eventually consistent, allowing I/ O-free access to shared information.

As noted in ‘How Sirius Works’ page, Sirius applies the updates in a totally ordered manner. This

means that the order of the updates is the same for all the nodes. Sirius uses multi-paxos to establish
this order. Nodes then distribute the updates and add them to an in-memory queue to be able to
apply them in order. Sirius uses a catch up algorithm to check for and obtain any missing updates
from neighboring nodes. To create a persistent state, the updates are written to a write-ahead
transaction log before calling the application’s callback function. This allows a node to be stopped
and restarted, able to replay the transactions and get back to its original state before reconnecting to
the cluster.

We wanted to test our library under conditions that would replicate the effects of a network that was
malfunctioning in controlled ways. In particular, the tests would be run to determine how well the
Sirius library performs while the underlying network is suffering from partitioning.

Which brings us to Jepsen -- an invaluable application tool that uses a set of virtual machines,
attached to a virtual network, to perform various actions against the application to be tested -- while
using its nemesis functionality to partition the network. This gives us an automated way to degrade
or break the network out from under Sirius.

Because Sirius is a library and not a complete application, Jepsen tests were performed against the
Sirius reference application written in Java. This reference application uses a REST-styled API to

allow for basic operations against the datastore. The operations are limited to gets, puts, deletes, and
listing of the keys.

For the purposes of these tests, the clients within Jepsen needed to be as simple as possible. For that
reason, we first created a minimal HTTP-based client that performs operations using a specific Sirius
node in the cluster. Jepsen then instantiates several of these clients, each using a different Sirius
node.

Next, we created a set-client within Jepsen to call the REST services of the reference

application. The set-client needed the functionality to both store items, and retrieve the list of items
previously stored. This matched well with the REST API of the reference application. (The reference
app did not expose a conditional put operation, so we did not create a check-and-set client.) Our set-
based clients would then perform a series of puts to the datastore under various conditions, and then
check the list of objects saved in the datastore. The results were then compared against the expected
values from the operations, and the differences reported.

L,

TESTING SIRIUS WITH JEPSEN

As you can see below, the client implements two operations: add and read. The add function sends
an add request to the Sirius reference application instance that it is associated with at the time of its
creation, and the read operation reads from the datastore and reports the list of keys as a set of
values. Jepsen uses this set to perform the final comparison.

Client-initiated add and read requests are used by Jepsen to perform a final
comparison.

Figure 1a:

(defrecord CreateSetClient [url]
client/Client
(setup! [_ test node]
(let [url (str "http://" (name node) ":8000")]
(info node "node url: ™ url)
(CreateSetClient. url)
)
)

(teardown! [_ test])
(invoke! [this test op]

(case (:f op)
:add (timeout 6000 (assoc op :type :info :value :timed-out)

(let [r (webclient/put (str url "/storage/jepsen/" (:value op)) {:body (str (:value op))
:throw-exceptions false})]

(case (:status r)
200 (assoc op :type :ok)
(assoc op :type :info :value (:body r)))))
tread (timeout 6000 (assoc op :type :info :value :timed-out)

(let [r (webclient/get (str url "/keys") {:throw-exceptions false})]

(case (:status r)
200 (assoc op :type :o0k :value (set (map parse-int (str/split-lines (str/replace (:body r) #"jepsen/" "")))))
404 (assoc op :type :info :value :not-found)
(assoc op :type :info :value (:body r)))))

e

TESTING SIRIUS WITH JEPSEN

The Test it self!

Figure 1b:

(deftest create-test
(let [test (run!
(assoc
tst/noop-test
:name "sirius—dummy"
10s debian/os
:db db
:client (create-set—client)
:model (model/set)
:checker (checker/compose {:html timeline/html
:set checker/set})
; inemesis (nemesis/partitioner nemesis/bridge)
:nemesis (nemesis/partition-random-halves)
:generator (gen/phases
(—=>> (range)
(map (fn [x] {:type :invoke
3 radd
:value x}))
gen/seq
(gen/stagger 1/10)
(gen/delay 1)
(gen/nemesis
(gen/seq
(cycle [(gen/sleep 60)
{:type :info :f :start}
(gen/sleep 300)
{:type :info :f :stop}l)))
(gen/time-limit 600))
(gen/nemesis
(gen/once {:type :info :f :stop}))
(gen/clients
(gen/once {:type :invoke :f :read}))
)))1
(is (:valid? (:results test)))
(pprint (:results test))))

The test we developed runs for a fixed length of time. Starting with a fully functional network, we
then “break” the network in interesting ways.. To accomplish this, we used two of the built-in
nemesis functions. The first nemesis is a bridge nemesis, which creates a situation in the network
where the five nodes are divided into two pairs and a single node. The nodes in the pairs can see their
companion and the single node, but not the nodes from the other pair. This allows the single node to
act like a bridge between the two halves of the network.

3

TESTING SIRIUS WITH JEPSEN

The second nemesis is a partition-random-halves nemesis. It takes the five nodes in the network and
divides them into two sets, roughly half sized. One set is a pair and the other is a triple. The nodes in
one half cannot communicate with the nodes in the other half. In the code above, the bridge nemesis
has been commented out and the random-halves nemesis has been put in its place.

Two built-in nemesis functions enabled us to “break’ the network in interesting

Figure 2:

ways.

INFO jepsen.core — Run complete, writing
INFO jepsen.core - Analyzing
INFO jepsen.core — Analysis complete
INFO jepsen.system.sirius - :n4 Sirius torn
INFO jepsen.system.sirius - :n2 Sirius torn
INFO jepsen.system.sirius - :nl Sirius torn
INFO jepsen.system.sirius - :n3 Sirius torn
INFO jepsen.system.sirius - :n5 Sirius torn
{:valid? true,

thtml {:valid? true},

:set

{:valid? true,

:lost "#{}",

:recovered "#{}",

:ok "#{1..15 17..37 39..59 61..83 85..2632}",

:recovered-frac 0,

:unexpected-frac 0,

:unexpected "#{}",

:lost-frac 0,

:ok-frac 2628/2633}}

Ran 1 tests containing 1 assertions.
@ failures, @ errors.
vagrant@vagrant-ubuntu-trusty-64:/jepsens$

The tests were run so that there were about 2600 insertions each. In neither case did Jepsen report
that data was “lost” In Jepsen terms, “lost” data is data that has been sent to the datastore and
acknowledged by a datastore write, but in the end, the data was not in the set of keys stored in the
datastore.

The first test was performed using the bridge nemesis. In the bridge case, five of the inserts were not
successful -- but because these were reported as being errors, they weren’t “lost,” which enabled the
client to retry the operation.

84

TESTING SIRIUS WITH JEPSEN

As you can see from the results -- “0 failures, 0 errors”, once the cluster reaches stability, it doesn’t
miss a beat -- it just works, even as the underlying network is having trouble.

Once a cluster reaches stability, it just works - even if the underlying network is
funky..

Figure 3:

jepsen.core - Run complete, writing
jepsen.core - Analyzing
jepsen.core - Analysis complete
jepsen.system.sirius - :n3 Sirius torn
jepsen.system.sirius - :nl Sirius torn
jepsen.system.sirius - :n4 Sirius torn
jepsen.system.sirius - :n2 Sirius torn
jepsen.system.sirius - :n5 Sirius torn
{:valid? true,
:html {:valid? true},
:set
{:valid? true,
:lost "#{}",
:recovered "#{1168..1171 1318 1330}",
1ok
"#{0..2 4..16 18..37 39..59 61..81 83..233 235 237..251 254..270 272 274..288 291..308 311..325 328..344 347..362 365..380 383..39
9 402..417 420..436 439..455 458..473 476..490 493..509 511 513..527 530..545 547 549..564 567..582 584 586..600 603..619 622..637 6
49..656 659..673 675 677..691 693 695..710 712 714..728 731..747 750..765 768..782 784..785 802 805..820 822 824..839 842..856
858 860..875 877 879..893 895..896 898..912 914 916..930 932 934..949 952..966 968..970 972.. 989..1003 1006..1022 1024 1026..104
0 1043..1059 1061 1063..1077 1079 1081..1096 1098 1100..1114 1116 1118..1132 1134..1135 1137..1150 1152 1154..1163 1168..1171 1173..
1176 1178..1201 1203..1222 1224..1246 1248..1268 1270..1292 1294..1314 1316..1318 1328 1330..1331 1333..1336 1339..1340 1342..1349 1
351..1352 1354 1356..1363 1365..1366 1368 1370..1377 1379 1381..1382 1384..1391 1393 1395..1396 1398..1405 1407..1408 1410 1412..141
9 1421 1423..1424 1426..1433 1435 1437 1439..1447 1449 1451..1452 1454..1461 1463 1465 1467..1474 1476..1477 1479 1481..1489 1492..1
493 1495..1502 1504..1505 1507 1509..1517 1520..1521 1523..1530 1532..1533 1535..1536 1538..1545 1547 1549 1551..1558 1560..1561 156
3..1564 1566..1573 1575 1577 1579..1586 1588 1590..1591 1593..1601 1604..1605 1607..1615 1617 1619 1621..1629 1631 1633..1634 1636..
1643 1645..1646 1648 1650..1658 1660 1662 1664..1672 1674 1676 1678..1685 1687..1688 1691..1699 1701 1703}",
:recovered-frac 6/1705,
:unexpected-frac @,
:unexpected "#{}",
:lost-frac 0,
:ok-frac 1494/1705}}

Ran 1 tests containing 1 assertions.
@ failures, @ errors.
vagrant@vagrant-ubuntu-trusty-64:/jepsen$

The second test used the random-halves nemesis. This test was harder on the cluster and fewer of the
additions were successful, but it didn’t lose any acknowledged writes. There were a few instances
where the cluster was able to recover an add error. Jepsen considers it an error when a write 1s
returned, but it was actually successful as “recovered” write. Since the writes of the same value are
idempotent, and even without recovery taking place, any successful retry of the failed add results in
an identical set of values to what would have been, had there been no initial failure.

The main point to take away from this is that the Sirius library is not acknowledging and then failing

to persist additions to the dataset. If the Sirius library says that the addition was complete, it really
was.

e

TESTING SIRIUS WITH JEPSEN

The other benefit to the library is that the entire dataset is replicated to each node eventually, which
allows the retrieval of the data to incur a low to zero I/0 penalty (Sirius’ main use case holds the
data in memory.) This makes the cluster’s nodes perennially readable, even if the data is stale. The
library was specifically designed to support applications that need to be available for reads under
potentially adverse conditions, and a stale read is better than no read in those cases.

The latest update to Jepsen introduced a new analysis tool called Knossos. Knossos works by
checking to see if the history of the parallel client operations is “linearizable” --- meaning it appears
to the rest of the system to occur instantaneously. It does so by looking for possible permutations of
the history, until a linearization is found. It doesn’t try to find multiple versions. Once it finds one, it
is complete. This type of check is essential to prove the functionality of any system that guarantees a
high level of consistency.

Sirius does not offer such a high degree of consistency. Within Sirius, the updates/writes are
sequenced using Paxos. This allows Sirius to guarantee that there is one order for all the updates,
and that all nodes in the cluster apply the updates in that order. Sirius guarantees that each node is
somewhere in the sequence of updates, not that the node is at the end of the sequence. Sirius doesn’t
use Paxos for reading data from the store, in any way. For the canonical use case, for instance, Sirius
is bypassed for the reads. This design allows us to achieve eventual consistency -- which quickly led
us to the conclusion that testing Sirius operations with Knossos did’t make sense, as Sirius does not
offer a level of consistency that Knossos would be testing.

As a result, Sirius succeeds in the following design goals for a highly available datastore for reference
datasets:

1. The data needs to be in memory.

2. The application would tolerate eventual consistency of the slowly changing data.

3. The read throughput needs to be much higher than the write throughput.

4. Acknowledged writes could not be lost.

The Jepsen testing of the reference application showed that the library does indeed meet those
requirements.

We’ve long admired how the Jepsen testing framework analyzes open source projects, often finding
some pretty terrible bugs. That’s why we opted to run it against our Sirius library -- to find and fix
bugs, of course, especially because the Paxos protocol is notoriously difficult to implement. Getting
the “badge of honor” that is zero bugs? Well, that was pretty nice too.

So, as it relates to the eight fallacies of distributed computing, it would appear that the network is
reliable -- or can be, with careful testing using powerful open source tools, like Jepsen. Thank you
Jepsen (and its creator, Kyle Kingsbury)!

